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SUMMARY 

. 
Users of cryogenic wind tunnels must have available surface flow visualization 

techniques to satisfy a variety of needs. While the ideal from an aerodynamic stand 

would be non-intrusive, until an economic technique is developed there will be 

occasions when the user will be prepared to resort to an intrusive method. One intrusive 

method i s  proposed, followed by some preliminary evaluation experiments carried out 

in environments representative of the cryogenic nitrogen tunnel. 

The technique uses substances which are gases a t  normal temperature and 

pressure but liquid or solid a t  cryogenic temperatures. These are deposited on the 

model in localised regions, the patterns of the deposits and their subsequent melting or 

evaporation revealing details of the surface flow. The gases were chosen because of the 

likelihood that they will not permanently contaminate the model or tunnel. 

24 gases are identified as possibly suitable and four of these were tested from 

which i t  was concluded that surface flow direction can be shown by the method There 

is the possibility that other flow details might also be detectable. The cryogenlc wind 

tunnel used for some of the tests was a type insulated on the outside and did not show 

any signs of contamination. 
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1. introduction 

Among the several options which exist for visualizing surface flows on models 

in cryogenic wind tunnels, as yet the use of a frozen deposit of a gas does not seem to 

have been explored. The notion is that the introduction of a suitable gas to the flow just 

upstream of the model in the form of a discrete localised jet or jets might, at an 

appropriate model surface temperature, deposit in the solid phase and show a t  least 

some detail of the flow direction adjacent to the surface. There is also the possibility 

that the nature of the deposition of the solid, or i t s  subsequent reliquefaction or 

sublimation, might show evidence of other flow properties such as transition, separation 

or shock position. There is the further possibility that the streaming and evaporation of 

a deliberately melted solid deposit or of a deposit made in the liquid phase, might show 

surface flow details. It i s  recognised that some flow phenomina, transition in particular, 

might be affected by the presence of the deposit in its solid or liquid phases. 

The phrase 'marker gas' is used loosely in this report to refer to the state, a t  

normal temperature and pressure (NTP), of a substance which is to be used for surface 

flow visualization. When in use in a cryogenic wind tunnel the marker gas might 

undergo several changes of phase. The technique is intended for application to the 

nitrogen cryogenic wind tunnel. These gases are chosen because they combine the 

possibility of showing surface flow details with the possibility that they will not 

permanently contaminate the model or tunnel. The intent is that once temperatures are 

raised sufficiently the deposits will become volatile, vaporise and then be carried away in 

the nitrogen flow. 

Following the identification of possible gases, demonstrations were devised 

using some gases which happened to be readily available, in order to begin to explore 

the notion In one demonstration the gases were simply blown onto the surface of a 

cooled polished stainless-steel plate in order to view the nature of the deposit, in 

particular i t s  appearance, i t s  contrast against the metal The other demonstration 

involved the injection of the marker gas into the gaseous nitrogen flow in a small 

cryogenic wind tunnel' 2 ,  upstream of a f l a t  plate supporled in the tes t  section 

Although the accumulated experience i s  limited i t  has reached the stage where 

experimental evidence points strongly to the technique being viable Reporting 

therefore would be appropriate 
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2. Possible marker aases 

The search was aimed a t  listing the commercially available non-toxic gases 

which have melting temperatures in the relatively arbitrary range 77K to 150K at 

atmospheric pressure. It should be noted that a quoted temperature applies to  melting 

in the presence of the liquid phase of the same substance. In general the melting (or 

sublimation) of the solid will be modified in the environment of a wind tunnel where 

there might exist complex combinations of phases, and gradients of partial pressure of 

the gas phase adjacent to the surface of the model, possibly modifying the melting and 

boiling temperatures. The two-dozen gases identified under these guidelines are listed 

in Table 1 in the order of increasing melting temperature. Included also are the boiling 

temperatures and their costs in the UK relative to an equal mass of gaseous nitrogen. 

The liquid phase of one of these, propane, already has been exploited 

successfully in surface flow visualization3-6 in the cryogenic wind tunnel. The liquid 

propane was used to carry pigment or dye for deposition, the propane subsequently 

evaporating but, in doing so, persisting long enough to carry a useful distance. 

The persistence of a liquid trail might depend not only on the tunnel test 

conditions and the boiling temperature of the marker gas, but also on the band of 

temperature over which it remains in the liquid phase. Inspection of the table will reveal 

that the spread of melting temperatures is fairly even throughout the range, with a 

good variety of liquid bands. Figure 1 has been prepared to emphasise and summarise 

these properties. 

If the melting or sublimation of a solid deposit does prove to be a useful tool in 

flow visualization then the choice of the marker gas might be important because the 

temperature of the phase-change could (although some experiences to be presented 

later suggest that this may not be the case) become one determinant of the Reynolds 

number of a test. The values of the Reynolds numbers available in an atmospheric 

pressure cryogenic nitrogen tunnel with the set of gases have been calculated for Mach 

0 1 and are presented in the form of a Reynolds number ratio also in Table 1 This i s  the 

ratio of the Reynolds number in the cryogenic wind tunnel to that in a conventional 

tunnel a t  the same pressure and Mach number. There are wide variations of pressure 

around wind tunnel models possibly affecting the temperatures of phase changes, but 

for the purpose of these computations the stagnation temperature of the tunnel flow i s  

assumed equal to the melting temperature of a substance as given in the table. Similar 
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computations are possible for other stagnation pressures and Mach numbers, but may 

be pointless until more experience i s  gained on the influence of the tunnel environment 

on the phase-changes. The discrete values of available Reynolds numbers are illustrated 

on Figure 2. A good spread is evident. If the evaporation of a liquid deposit proves 

useful then different temperatures and Reynolds numbers apply. 

Among these gases the only ones which are listed as corosive are numbers 22 

and 24, and in these cases only with copper and silver. 

Finally, the point should be made that almost certainly there are more gases 

which could be considered as evidenced by the experience with carbon dioxide detailed 

below For example the fact of a gas having a relatively high freezing temperature does 

not necessarily mean that it is  unsuitable for deposition as a solid on a model a t  a lower 

temperature. 

3. A simple bench-top demonstration 

Four gases were chosen for th i s  initial investigation, the choice being relatively 

arbitrary but influenced by the information in Table 1 and also their immediate 

availability. These were carbon dioxide, butane, Freon-12 and argon. The first does not 

appear in Table 1 because its sublimation temperature does not fall into the cryogenic 

range, but i t  was available, is non-toxic and a suspicion existed that it could easily be 

induced to deposit as a solid The freezing temperatures of the gases are respectively 

194.7, 134.8, 1 1  5 and 84K. The COz and argon were stored in commercial compressed 

gas cylinders, the Freon-12 and butane in small canisters used for an air-brush and a 

camping heater respectively. 

The experimental setup IS illustrated on Figure 3 The deposit was formed o n  a 

small polished stainless steel plate carrying a thermocouple taped to i t s  front side The 

temperatures must be taken as very approximate because of the crudeness of the 

arrangement for controlling the temperature of the plate The plate was hung vertically 

in a cryostat and was cooled initially to 77K by dipping it into liquid nitrogen Some 

control could be exercised over the temperature of the plate by withdrawing it from the 

LN2 and allowing it to warm in the GN2 before attempting a deposition A triple-glazed 

window excluded the atmosphere Marker gas was introduced briefly along a pipe as 

illustrated, the pipe being pre-purged with the gas 

. 
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C02 was deposited very easily at a plate temperature of about 79K. forming 

almost instantly a relatively uniform white C02 frost layer over the whole plate, which 

finally sublimed when the plate temperature reached about 190K. 

Solid butane deposits were also '.?rmed at  a plate temperature of about 79K, 

having the clear appearance of ice rather than a frost. The deposit appeared to melt a t  

about 145K and finally to dry a t  about 22OK. The clear solid deposit did not seem 

suitable for flow visualization purposes, although the liquid phase might prove useful. 

Freon-12 proved easy to deposit in the solid phase. Deposits were produced at 

various plate temperatures between about 1 1 1 K and 79K, all with the appearance of a 

white frost. The solid deposits appeared to begin to melt a t  an indicated temperature of 

about 145K and to be completely evaporated a t  about 230K. In the plate temperature 

band 230K to 135K the deposits were seen to form as a clear liquid. 

In contrast i t  was not possible to detect any deposit of argon, liquid or solid, 

despite efforts to form deposits a t  plate temperatures very close to that of LN2. 

There seemed to be no problem with freezing of the marker gases in the pipe 

These results encouraged the following trials in the 0.1 m cryogenic wind tunnel. 

4. Wind tunnel tests 

4.1 The tunnel 

As the tunnel has been described elsewhere this section contains only summary 

information pertinent to the flow visualization tests. The tunnel first ran in 1977 and 

was constructed for flow visualization work. It i s  a small continuous running, closed 

circuit, fan driven tunnel operating a t  atmospheric stagnation pressure, the big end 

being vented directly to atmosphere. Cooling i s  by liquid nitrogen stored in a 

pressurised cryostat and injected in the downstream direction into the first diffuser. 

There are electrical heaters for the main stream and also for the fan bearing. Operating 

temperatures can be varied between about 80K and 380K. The tunnel has thermai 

insulation only on its outside. The option I S  available for the automatic control of Mach 

number and stream stagnation temperature using a microcomputer which also acts as a 

data logger. The operating envelope in the form of unit Reynolds number as a function 

of Mach number and temperature i s  shown on Figure 4. For these tests only a low Mach 
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number was used close to 0.1 and therefore on this figure the locus of all runs was a 

narrow vertical line centered at M = 0.1. 

4.2 The test section artanaement 

The streamwise cross section of the test section is square, nominally 4 inches 

across (O.lm) with corner fillets. The walls are aluminium and contain an observation 

window and various types of instrumentation. A door is used for mounting models. 

The longitudinal cross section of the arrangement for these tests i s  shown on 

Figure 5, a sketch which extends from the end of the contraction to the beginning of the 

first diffuser. A flat plate representing a model was positioned in the middle of the 

stream at zero incidence. The plate was 1116th-inch thick and 3 inches long. The width 

was 2.4 inches and therefore the edges of the plate were well clear of the walls of the 

test section. It was mounted on a streamlined support made from a resin impregnated 

cloth laminate having a low thermal conductivity. A copper-constantan thermocouple 

was buried in the plate just a f t  and to one side of the support strut. 

The leading edge of the plate was radiused to discourage a separation bubble. 

The information in hand does not allow a claim that a bubble did not exist, or to 

speculate on the state of the boundary layer on the plate. The plate was smooth aside 

from the intrusions of a pair of fixing screws. The more upstream screw can be seen in 

the photographs of Figure 6. The screws were countersunk but the heads were not 

fi I led. 

The marker gases were introduced through a 9/64-inch bore brass tube which 

was positioned as shown on Figure 5 for this operation, directly ahead of the leading 

edge. The tube was exposed to the cold flow and was uninsulated. It was occasionally 

traversed away from the leading-edge region after depositing the gas. The supply pipe 

was primed with the marker gas while the tunnel was still a t  room temperature, the gas 

flow then being turned off to avoid plugging the pipe with the marker gas during the 

cooldown of the tunnel. This risk existed (the event was experienced) largely because 

the pipe was unheated. 

The procedure followed was to cool the tunnel to a desired temperature (and 

by this stage any air in the tunnel would have been purged) then to briefly inject a 

marker gas while observing and photographing results thorugh the window It was 

found that a t  steady state the plate and stream temperatures were equal to within 
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instrument error, t 2K. Mach number was under continuous closed-loop control but for 

these tests the temperature control was manual. On the occasions when a phase change 

was to  be induced in a deposit the temperature of the tunnel and plate were allowed to 

drift upwards with the LN2 supply turned off. Tunnel tests were carried out with argon, 

C 0 2  and Freon-12. Results are discussed only for the latter two because, as with the 

bench tests, there were no visible deposits of argon. 

4.3 Results . 
4.3.1 m- 

Solid deposits were formed in repeated demonstrations as a streak 

downstream of the pipe a t  plate temperatures between 163K and 22OK. Under the 

illumination of a tungsten filament lamp their perceived colour was not always white 

but varied from white through grey to brown depending on the viewing angle. The 

contrast with the aluminium plate was always good. When the plate was allowed to 

warm 'gradually the streak disappeared but not in a uniform manner. There was a 

tendency for a waisting of the deposit to form just after the leading edge and the 

deposit to first disappear a t  the waist, then downstream, then finally between the waist 

position and the leading edge. The uneven disappearance could have been because of 

an uneven initial deposit or because of uneven sublimation, or both. In one significant 

demonstration a streak of solid C02 was deposited a t  a plate temperature of 163K while 

the tunnel and plate were slowly warming. The deposit had completely cleared by the 

time the temperature reached 173K. Both of these temperatures are well below the 

quoted sublimation temperature of C02, about 195K. From the accumulated experience 

it i s  beginning to appear that C 0 2  deposits may be made a t  any temperature from about 

77K to around ZOOK, and that sublimation will be experienced a t  stream temperatures 

well below 195K. 

Photographs are shown on Figure 6. The view is directly onto the plate. Its 

leading edge is identified and the greyness of this edge i s  caused by i t s  radius. The flow 

is left  to right; the dispensing pipe i s  just visible but out of focus because it has been 

retracted to avoid the possibility of the sublimation events being influenced by i t s  wake. 

The upper photograph was taken just after deposition a t  a temperature of about 190K. 

The streak, which is parallel-sided and generally dark in this picture, i s  visible in the 

picture for only a short distance. This is a consequence of imperfect illumination. The 

streak could be seen easily by eye reaching to the trailing edge of the plate. The lower 
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picture was taken of the same streak a t  a later time and a temperature of 22OK The 
streak is somewhat narrower and has almost disappeared in the region indicated by the 

X, the waist. 

In order to begin to  test for durability, on one occasion a solid deposit was 

formed on the plate a t  195K following which the tunnel temperature was reduced for a 

period The minimum temperature reached was 90K during this run of 42 minutes in the 

temperature range which cycled from 195K to 90K and then back through 195K to 22OK 

when the streak disappeared During al l  but the final moments the streak remained 

essen ti a I I y u nc ha ng ed i n a p pea ra nce 

4.3.2 Freon-1 2 

This marker gas was used during one 1-hour run of the cryogenic wind tunnel 

and the following comments summarise the principal observations. The minimum 

temperature reached during the run was 8SK. Deposits of liquid or solid F-12 were made 

in the temperature range 223K to  101 K. 

Liquid F-12 was deposited several times in the temperature range 223K to 1 15K 

during the initial cooldown of the tunnel. The liquid was clear but could be seen easily 

by eye streaming in the wind. In the narrow temperature range 113K to 101K the 

deposits were solid, forming a patch extending rearwards from the leading edge. The 

appearance of the deposit was non-uniform, streaky in places as though the F-12 had 

formed a slush. If the marker gas was le f t  flowing for some seconds there was a build-up 

like rime ice on the leading edge, also the formation of solids around the inside and 

outside of the pipe, The solid deposits were white and clearly visible. On warming the 

tunnel to about 115K (a figure which agrees very well with Table 1)  the deposits melted 

and streamed away. 

In the same manner as for C 0 2 ,  an F-12 solid was deposited (a t  113K) and the 

tunnel cycled down to a low temperature and back up again to the melting point This 

cycle took 10 minutes during which the minimum temperature reached was 85K 'he 

frozen F-12 remained in place until the first signs of melting a t  the end of the cyc'e a t  

11  SK. The whole deposit had melted a t  1 17K 

c 

During the warrnup of the tunnel towards the end of the run, liquid F-12 was 

again deposited. The temperature range explored was 139K to 183K, where of course 

no problems were caused by the freezing of the gas a t  the pipe. The deposited liquid 
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formed a relatively uniformly wetted streak, easily visible. With the marker gas turned 

off the wet streak dried progressively from the edges of the streak inwards a t  a rate 

which seemed to increase with temperature even though this range of temperature is 

well below that quoted in Table 1 for the boiling of F-12, 243K. The evaporation was 

presumably a consequence of the low partial pressure of F-12 in the tunnel, but does 

seem to offer the possibility that the manner of the evaporation might show surface 

flow details additional to that of flow direction 

5. Discussion 

5.1 Impact on the tunnel 

As the substances chosen here for flow visualization purposes are non-toxic, do 

not react with most metals and are well into the gas phase a t  NTP, there does not seem 

to be any likelihood of the permanent contamination of the tunnel (or model) or i t s  

operators. The gases will disappear from the circuit with the gaseous nitrogen used for 

cooling. Many are combustible in air but the quantities that are needed for flow 

visualization purposes are so small in relation to the tunnel flow that they will be 

regarded only as trace gases in the exhaust flowing from the chimney. 

The question of the affinity of marker gases for insulation materials must be 

addressed in the cases of some tunnels. It could be that such questions might affect the 

designs of future cryogenic wind tunnels. 

5.2 Prospects for visualizinq surface flow details 

Flow direction. There is no doubt that direction information i s  available using 

C02 and Freon 12. The direction is shown by frozen or condensed deposits There i s  the 

likelihood that other marker gases will be usable. 

Separation I t  i s  likely that leading-edge separation will be apparent from the 

selective deposition of marker gas and/or i t s  selective removal, the selectivi ty arising 

from the differing natures of attached and separated flows There was some evidence 

that this occured during tests with C 0 2  Indications of separations further aft will 

depend also on the effective length of travel of deposits from the points of iniection of 

marker gases into the flow. 

- 9 -  



Transition. It is possible that the different states of the boundary layers will 

induce either different rates in the sublimation of a solid deposit or, using the technique 

of slowly raising the temperature of the tunnel stream and the model, the different 

states might induce melting or evaporation a t  sufficiently different times to allow 

transition to  be located. The experiments covered by this report showed no evidence to 

support this suggestion. 

Shock position. As in the case of transition the prospects remain speculative a t  

this stage, but the changes in surface flow accompanying a shock might, further along 

the learning curve, be exploited to indicate position. 

5.3 Carbon dioxide 

At first sight this marker gas appears to have limited interest for application to 

the cryogenic wind tunnel because its sublimation temperature is rather high a t  about 

195K. Running a tunnel near this temperature confers only a small advantage in terms 

of Reynolds number compared with conventional tunnels. However the accumulated 

experience with the bench-top experiment and the cryogenic tunnel suggests 

otherwise: deposits of the solid have proved to be possible in the cryogenic tunnel a t  

temperatures well below 195K, and furthermore the appearance of the deposits made 

to date suggests that they are thin which might be important. One consequence is that 

the range of candidate gases included in Table 1 might be overly conservative. 

5.4 Dispensina the marker qas 

It is likely that a heated or alternatively well insulated pipe will be required for 

dispensing the marker gas, to prevent blockage of the pipe a t  temperatures below the 

freezing point, to avoid the formation of slush a t  somewhat higher temperatures and 

perhaps to control the temperature of the marker gas to influence the nature of its 

deposition. Its temperature a t  injection might influence the length on position of 

deposits downstream from the point of injection, or the grain size of solid deposits. 

Tests with a real model will require either multiple pipes (or nozzles), or a 

manoeuvrable pipe, or dispensation to orifices from within the model which was 

practiced with propane3.4 This might prove restrictive because , t  I S  unlikely that a 

model could be heated close to surface orifices to avoid freezing 
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5.5 Future test inq 

This is likely to be a substantial operation in view of the range of candidate 

marker gases which exists coupled with the other unexplored matters which include: 

design of gas dispenser; 

search for methods for showing the flow details of separation, 

transition and shock location; 

rates of sublimation below the freezing point; 

tunnel internal insulation; 

effect of model material and surface finish; 

effects of tunnel pressure and Mach number; 

measurement of deposit sizes; 

effect of temperature of marker gas. 

An investigation of the size and variety implied will require considerable effort 

and, logically, the use of small cryogenic wind tunnels including a pressure tunnel in 

order to  establish the best methods for application to the large low speed and the large 

transonic pressure tunnels. As scale effects may be important, ultimately it will be 

necessary to  prove the methods in the large scale tunnels. 
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Reynolds nr. Formula 
ratio 

Table 1. A range of gaseous substances a t  NTP which melt in the temperature 
range 77 to 150K (under the liquid phase a t  1 atmosphere) 

I 

I 1 

I 2  

i 3 

r 

I , 
~ 4 

Propane 83.3 231.1 3.9 5.75 C3H8 

Argon 84 87.3 0.7 5.67 A 

1-Butene 87.8 266.9 ia  5.3 C4H8 

Propylene 88 225.5 1 .a 5.29 C3H6 

Methane 

Freon 14 

Freon 13 

Ethane 

1 7  

a9 1 1  1.7 30 5.2 C H 4  

89 145.2 23 5.2 CF4 

92 191.7 7.5 4.94 CCI F3 

101.2 184.5 a. 1 4.29 C2H6 l a  
~ ~~ 

Ethylene 

Krypton 

3-Methylbutene-1 

Freon 22 

103.8 169.4 2.8 4.13 C2H4 

104 i 19.8 220 4.12 Kr 

104.7 293.6 26 4.08 C’jH1O 

113 232.4 2.6 3.64 CHClFz 

~ 11 

I 
~ 

~ 13 Freon 12 

, 14 Freon23 
1 
I 
1 15 lsobutane 

I 12 
~ 

115 243 4 0.6 3.55 CCl2F2 

118.2 191.1 6.2 3.41 CHF3 

128 261.4 4.5 3.04 C4H10 
~~ 

Freon 13 81 

Isobutylene 

129.9 215.4 9.8 2.98 CBrF 3 

132.8 266.3 1 2.88 C4H8 
E 
1 1 7  

I 

I 1 9  cis-2-8utene 

20 Ethylchloride 

~ 

1 3 4 3  276.9 24 2 84 CdH8 

C2H5CI 1 3 4 4  2854  5 4  2 84 

Xenon I 133 1 164.8 I 2200 I 2.88 I X 

Allene 

Freon 2 1 

Ethylacetylene 

137.2 238.7 110 2.75 C 3 H 4  

138.2 282.1 3.5 2.72 CHClzF 

143.2 281.9 35 2.59 C4H6 

22 

i 23 
- 
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Leading edge 

22OK 

Figure 6 Photographs of solid C02 shortly after deposttlon (upper) and later showlng partla1 
su blt matlon (lower). 
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